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(24) The assignment of the upfield resonance to carbonyl r trans to hydrogen 
is internally consistent with our earlier assignment derived from the 1H 
coupled-decoupled spectra. These clearly showed that the carbonyls trans 
to hydrogen give the most upfield resonances. 
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average environment to t and u, and the observation that t and 
u become equivalent provides strong support for this mecha­
nism. 

The second effect of the intrametallic rearrangement in Ci 
occurs when the Fe atom moves away from Ru and generates 
the Fe-Osi-Os2 triangle with the bridging COs. This move­
ment results in isomerization to the Cs isomer and is the final 
averaging process. It begins at 40 0C, and results in the aver­
aging of all carbonyls on both isomers. It is important to note 
that the variable-temperature 1H NMR spectra22 indicate that 
the Cs 5=* Ci isomerization occurs in the same temperature 
range as shown by the 13C NMR spectra. Studies are currently 
in progress employing H2FeRu2Os(CO)I3, H2Ru4(CO)13, and 
phosphine derivatives of H2FeRu3(CO) i3 to elucidate further 
the nature of these fluxional processes. 
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Cyclization Studies with 
Nor- and Homosqualene 2,3-Oxide 

Sir-
In order to learn more about the critical initial phase in the 

bioorganic polycyclization of squalene 2,3-oxide and related 
terpenoid epoxides,1 syntheses and reactivity studies of 4-
norsqualene 2,3-oxide (1) and homosqualene 2,3-oxide (2) 

were carried out. The behavior of these two analogues under 
biological and abiological conditions not only bears on the 
physical organic mechanism of A-ring formation,1 but also 
suggests that a comparatively high degree of enzyme control 
is exercised to achieve the oxide/neighboring 7r-bond juxta­
position necessary for initiating cyclization of the normal 
substrate. 

In connection with the favored synthetic approach to oxide 
1, we faced the need for a selective method of degrading a given 
aldehyde to the noraldehyde, applicable even where the product 
is the sensitive /^-unsaturated type. Toward this end the 
enamine 4 of aldehyde 3,2 on treatment with trimethylene di-
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thiotosylate3 in Et3N/CH3CN, was converted (65% from 3) 
to the a-ketoaldehyde trimethylene dithioketal 5, which, on 
cleavage4 with sodium methoxide in Me2SO/H20(T20), gave 
rise to (radiolabeled) dithioacetal 65 (85%). After generation 
of the parent crude aldehyde 7 by S-methylation and subse­
quent hydrolysis (CH3I and CaCO3 in H20/CH3CN), reac­
tion with diphenylsulfonium isopropylide in THF produced 
after preparative TLC (benzene, EtAc/hexane-silica) the 
desired epoxide, [3-3H]-I (69% from 6):5 NMR (CCl4) 5 1.20 
(3 H, CH3CO), 1.24 (3 H, CH3CO), 1.5-1.7 (18 H, 
C=CCH3), 1.9-2.1 (16 H, C=CCH2-), 2.15 (2 H, 
-CH2CO), 2.6 (1 H, HCO), 4.9-5.3 (5 H, C=CH). 

In order to secure the homologue 2, tris noraldehyde [2-
3H]-3 was first subjected to a Wittig reaction with ylide gen­
erated from triphenyl(methoxymethyl)phosphonium chloride 
(rt-C4H9Li/Et20),6 affording (65%) enol ether 8 as a mixture 
of cis and trans isomers (IR and NMR).5 On hydrolysis 
(glyme/CH3C02H/H20), the enol ether mixture yielded the 
homoaldehyde 9, which without purification was transformed 
(41%), as in the case of 1, to the homo epoxide [5-3H]-2,5 pu­
rified by preparative TLC (EtAc/hexane-silica): NMR 
(CCl4) 5 1.18 (3 H, CH3CO), 1.22 (3 H, CH3CO), 1.3-1.5 (4 
H, CH2CH2CC=C), 1.6 (18 H, C=CCH3), 1.8-2.2 (18 H, 
C=CCH2), 2.45 (1 H, HCO), 4.9-5.3 (5 H, C=CH). 

Nonenzymic cyclization experiments were carried out with 
0.15-0.35 equiv of catalyst in benzene at 7 0C. Epoxide 1 was 
isomerized (BF3) to acyclic aldehyde 10 (78%),5 cyclopenta-
none 11 (10%), and allylic alcohol 12 (5%), all noncrystalline 

CHO \ H--H--R » 
10 11 12 

products which were separated and purified by TLC (EtAc/ 
petroleum ether-silica gel). The structure of 10 was confirmed 
by independent synthesis involving two successive a-methyl-
ations (CH3I/hexane-THF)7 of the /erf-butylimine of alde­
hyde 3, each methylation being preceeded by formation of the 
imine anion through the action of lithium diisopropylamide. 
The cyclization product was identified as 11 by its carbonyl 
stretch at 1750 cm -1 and by its NMR spectral properties 
(CDCl3)-S 0.63 (s, 3 H, /-CH3), 0.93 (d, J = 7 Hz, 3 H, 
5ec-CH3), 0.99 (d, / = 7 Hz, 3 H, *ec-CH3), 1.59 (br s, 12 H, 
C=CCH3), 1.67 (s, 3 H, C=CCH3), 1.80-2.56 (m, 20 H, 
-CH2-), 5.13 (br s, 4 H, C=CH)-including comparison with 
those of structurally similar, known 1,2,3-trimethylcyclo-
pentanes.8-10 

With SnCl4, epoxide 2 generated the precedented (vide 
supra)1 '-12 rearrangement products 13-14 (a mixture with 13 
predominating, 50%), monocarbocyclic bridged ether 15 
(27%), and, as in the case of 1, some acyclic allyl alcohol 

I CHO I i 

13 ^K 15 

14 
(0.5%), structural assignments to which were made on the basis 
of IR and NMR spectral data as well as analogy to other ep­
oxide cyclization results.11-12 For example, in addition to 
paralleling the bicyclo[2.2.1] ether type observed earlier,11-12 

the bridged ether structure 15 was assigned on the basis of its 
IR (ether stretch at 1080 cm"1) and NMR spectrum (C6D6): 
6 1.00 (s, 3 H, «-CH3), 1.17 (s, 3 H, /-CH3), 1.20-2.44 (br m, 
38 H, overlapping CCH3), 1.42 (s, 3 H, CH3CO), 3.72 (d, 1 
H, HCO), 5.37 (m, 4 H, C=CH). 

Although participation firmly governs production of 4-
hydroxycyclohexyl cation through acid-catalyzed cyclization 
of appropriately substituted hexa-l,5-diene 1,2-oxide,1 a 
similar course of action in the norsqualene oxide case (1) 
cannot be followed, in that the colinear arrangement of C-2, 
C-6, and oxygen required for an SN2-like ring-closure process13 

is not possible, in keeping with the argument made elsewhere1 

for the mechanism of A-ring formation. We believe that the 
modest amount of cyclic product 11 is likely formed by un­
assisted SNI-like epoxide opening, followed by interaction of 
the resulting carbonium ion or ion pair with the neighboring 
7T bond.14-15 In the case of homosqualene oxide 2, entropic 
factors presumably are responsible for a decrease in the yield 
of cyclization product from the level observed with squalene 
oxide and related systems (as high as 67%), with consequent 
formation instead of acyclic materials in greater yield. 

Under circumstances18 (incubation at 37 0C using resus-
pended microsomes) where substantial cyclization of squalene 
oxide and many of its analogues18 occurs, radiolabeled 1 (20 
Hg, 4.68 X 105 dpm) and 2 (20 ng, 1.82 X 105 dpm) (each in 
0.4 mL of enzyme preparation) do not form detectable 
amounts (<0.5%) of any cyclization products. In both cases, 
although small amounts of the corresponding glycol may have 
been formed, most of the starting epoxide was recovered, re­
sults indistinguishable from those using denatured enzyme 
(controls run with boiled microsomal preparation). In parallel 
runs, squalene oxide was converted to lanosterol in 66-70% 
yields. 

That the cyclase cannot take advantage of nonenzymic cy­
clization pathways open to 1 and 2 implies to us that the con­
straints employed by the enzyme to optimize the stereoelec-
tronic opportunities for ring-A formation by a concerted pro­
cess are considerable, highly specific, and thus not conducive 
to cyclization by other mechanistic means, all consequences 
of the special structural character and binding capability in 
this region of the enzyme. In turn, substrate structural re­
quirements in the epoxide/neighboring 7r-bond area—in 
contrast to other parts of the substrate18-19—are corre­
spondingly high and specific: no variation in the distance be­
tween these structural units is permitted, and the relative ori­
entations necessary for their anchimeric involvement must be 
achievable and optimized.20 These views, taken together with 
previous conclusions,19 allow the proposal that an intact 
hepta-2,6-diene 2,3-oxide moiety, which is conformationally 
oriented as shown in 16, is per se necessary for cyclase ac­
tion. 

C 
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Inelastic Electron Tunneling Spectroscopy 
of a Chemically Modified Surface 

Sir: 

Chemical modification of metal oxide surfaces for electro­
chemical purposes has attracted a considerable amount of 
attention since the first report by Murray.1-5 The modifications 
can be performed in a controlled manner using commercially 
available silane derivatives and the technique provides a novel 
approach for studying and controlling surface reactions. 
Fundamental to this objective, however, is the need to under­
stand clearly the bonding and structural aspects of the bonded 
molecules. Thus, it becomes attractive to take advantage of the 
very sensitive inelastic tunneling spectroscopy (IETS), which 
will give vibrational structure information of organic mono­
layers on metal oxide surfaces. The silylation approach of co­
valently bonding organic moieties to a metal oxide surface 
provides an alternative to the vapor and liquid phase surface 
doping techniques6 generally used in IETS studies. We now 
present some preliminary results of such a study. 

The metal/insulator/metal sandwiches of 1-mm2 cross 
section were prepared on clean 10X15 mm glass slides. First 
an aluminum strip 1 mm wide was vacuum evaporated using 
the appropriate shadow mask and immediately oxidized by 
admitting pure oxygen into the vacuum system. The plate was 
next immersed in an anhydrous benzene solution containing 
the molecule of interest, for example triethoxyvinylsilane (1% 
v/v) and allowed to stand for 5 min. The excess reagent was 
removed by rinsing the plate with six portions of fresh benzene. 
The entire silylation process was carried out under an anhy­
drous nitrogen atmosphere since the presence of trace amounts 
of moisture will generate thick polymeric films. A 1-mm-wide 
strip of lead was subsequently evaporated for the counter 
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Figure 1. Tunneling spectra at 4.2 K of covalently bonded vinylsilyl (A) 
and 3-aminopropylsilyl (B) derivatives. 

electrode. The junction resistances were in the range of 50-
5000 ft/mm2. The junction was next mounted for cooling to 
4.2 K as previously described.6 

As can be seen in Figure 1, good tunneling spectra (A2IfAV2 

vs. V) are obtained of the organic material when it is intro­
duced into the sandwich junction by a chemical reaction as an 
alternative to the normal6 doping procedures. The IETS 
spectrum for the vinylsilyl derivative (A) is relatively simple 
and compares well with the IR spectrum for trichlorovinylsi-
lane.7 While not shown in Figure 1, plot A reveals only a very 
small broad peak in the region near 3600 cm -1 suggesting the 
extensive removal of surface OH groups.6 Of particular interest 
is the presence of bands at 1070, 2853, and 2944 cm -1 which 
indicates the presence of -OCH2CH3 groups on the surface. 
When the aluminum surface is silylated with excess trieth­
oxyvinylsilane and not rinsed, then these bands become much 
stronger plus other weaker bands appear as expected. The 
simplest conclusion is that some ethoxy groups survive the si­
lylation reaction and remain intact as Si-O-CH2CH3. This 
result shows that during the reaction of the triethoxysilyl de­
rivative with the surface some S1-OCH2CH3 groups remain 
and may be available for reaction with Lewis bases. The region 
800-1100 cm -1 is not well resolved which is unfortunate since 
it could provide some insight into the Si-O-Si and Si-O-Al 
bonding structure.8 

The spectrum for the 3-aminopropylsilyl derivative (B) 
shows somewhat better resolution than the IR spectrum for 
the starting material, 3-aminopropyltriethoxysilane.7 The 
major difference is the position and the weakness of the N-H 
stretching bands at 3320 and 3250 cm -1 which are displaced 
to lower frequencies by ~80 cm-1. While this shift is appro­
priate for the presence of intermolecular hydrogen bonding,8 

it is dangerous to draw definite conclusions on the molecular 
structure of the 3-aminopropylsilyl insulator layer without 
understanding clearly the influence of the deposited lead 
contact. 

Silylation of the aluminum oxide surface using 3-(2-ami-
noethylamino)propyltrimethoxysilane also produced a good 
sandwich junction and the resulting IETS spectra is similar 
to that of the 3-aminopropylsilyl derivative. A general obser­
vation is that the resistivity of the junction increases with in­
creasing molecular size of the covalently bonded molecule 
suggesting that this factor may be a limitation for studying 
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